SIRT1-mediated acute cardioprotection.
نویسندگان
چکیده
Overexpression studies have revealed a role for silent information regulator of transcription 1 (SIRT1) lysine deacetylase in cardioprotection against ischemia-reperfusion injury via long-term transcriptional effects. However, short-term SIRT1-mediated lysine deacetylation, within the context of acute cardioprotection, is poorly understood. In this study, the role of SIRT1 in the acute cardioprotective paradigm of first window ischemic preconditioning (IPC) was studied using SIRT1-deficient (SIRT1(+/-)) and SIRT1-overexpressing (SIRT1(+++)) mice. In wild-type hearts, cytosolic lysine deacetylation was observed during IPC, and overacetylation was observed upon pharmacological SIRT1 inhibition. Consistent with a role for SIRT1 in IPC, SIRT1(+/-) hearts could not be preconditioned and exhibited increased cytosolic lysine acetylation. Furthermore, SIRT1(+++) hearts were endogenously protected against ischemia-reperfusion injury and exhibited decreased cytosolic acetylation. Both of these effects in SIRT1(+++) mice were reversed by pharmacological SIRT1 inhibition on an acute timescale. Several downstream targets of SIRT1 were examined, with data suggesting possible roles for endothelial nitric oxide synthase phosphorylation, NF-κB, and stimulation of autophagy. In conclusion, these data suggest that SIRT1, acting on nontranscriptional targets, is required for cardioprotection by acute IPC and that SIRT1-dependent lysine deacetylation occurs during IPC and may play a role in cardioprotective signaling.
منابع مشابه
Lysine deacetylation in ischaemic preconditioning: the role of SIRT1.
AIMS Acute ischaemic preconditioning (IPC) induces protection against cardiac ischaemia-reperfusion (IR) via post-translational modification of key proteins. Lysine (Lys) acetylation is an important regulator of protein function, but this type of modification has not been studied in the context of IPC. We investigated Lys acetylation in IPC and its upstream regulation by SIRT1. METHODS AND RE...
متن کاملSirtuin 1 (SIRT1) Activation Mediates Sildenafil Induced Delayed Cardioprotection against Ischemia-Reperfusion Injury in Mice
BACKGROUND It has been well documented that phosphodiesterase-5 inhibitor, sildenafil (SIL) protects against myocardial ischemia/reperfusion (I-R) injury. SIRT1 is part of the class III Sirtuin family of histone deacetylases that deacetylates proteins involved in cellular stress response including those related to I-R injury. OBJECTIVE/HYPOTHESIS We tested the hypothesis that SIL-induced card...
متن کاملIndispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.
Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion injury (IRI). We previously found that treatment with N(G)-nitro-l-arginine methyl ester completely abrogates CR-induced cardioprotection and increases nuclear sirtuin 1 (Sirt1) expression. However, it remains unclear whether endothelial nitric oxide (NO) synthase (eNOS) plays a role in CR-induced cardioprotection an...
متن کاملInvestigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection
Objective(s): To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).Materials and Methods: RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff’s apparatus was used to perfuse the isolated rat hearts by subjecti...
متن کاملCardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro
Caffeic acid phenethyl ester (CAPE) could ameliorate myocardial ischemia/reperfusion injury (MIRI) by various mechanisms, but there hadn't been any reports on that CAPE could regulate silent information regulator 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 301 4 شماره
صفحات -
تاریخ انتشار 2011